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Abstract

We describe a large-eddy simulation approach for turbulent channel flow using the stretched-vortex subgrid-scale
model. The inner region of the turbulent boundary layer is not included in the modeling of this attached, wall-bounded
flow. Appropriate boundary conditions and closure are derived using a combination of elements from asymptotic expan-
sions, matching, and well-established wall-modeling approaches. The modeling approach for this application combines the
stretched-vortex subgrid model with a localized wall-shear-stress treatment that relates the instantaneous wall-parallel
velocity to the shear stress via the log-law, as appropriate for this (near-) zero pressure gradient flow. The impermeability
boundary condition is built into the method such that only the outer-flow solution is simulated, obviating the need to
impose the stiff no-slip condition at the wall. This formulation attempts to minimize numerical and modeling errors intro-
duced by the boundary-condition treatment, while preserving the fundamental elements required to predict low-order
statistics of these flows. We present simulation results for turbulent channel flow up to Reynolds number based on the
wall-friction velocity of 106. These compare favorably with results from large-scale DNS and experimental correlations.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The structure of the turbulent boundary layer can be described roughly in terms of two regions: an inner
region, where viscous effects dominate and whose thickness scales on wall-friction variables, and an outer
region, where more-classical turbulent transport may be assumed. Direct numerical simulation (DNS) of
the large range of scales spanned by the ensuing dynamics is impractical at the high Reynolds numbers of
interest in many applications. For this reason, large-eddy simulation (LES) is pursued as an alternative. Most
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LES numerical modeling of wall-bounded turbulent flows is hampered by the absence of large-scale eddies
adjacent to the inner region [1,2]. Ideally, one would like to perform LES of the outer boundary-layer and
interior-flow regions, while accommodating inner-region physics via an appropriate boundary treatment [3].
Currently, such flows present severe physical and numerical-modeling challenges, particularly in engineering
codes that are largely only second-order accurate and use relatively coarse mesh resolution. These challenges
represent some of the outstanding issues in wall-bounded turbulence modeling.

The most successful LES techniques today rely on a ‘‘partially resolved” approach in which the no-slip
boundary condition is used without a wall model. The filter size, or more appropriately the cutoff scale,
decreases as one approaches the wall to permit resolution of an acceptable fraction of the energy within the
near-wall eddies. Very skewed grids are typically required in such simulations at practical Reynolds numbers,
with wall-parallel directions captured in high-aspect-ratio cells with a much coarser streamwise extent to reduce
computational cost. An important limitation of this approach is that computational cost scales approximately
as the square of the friction Reynolds number [4], rendering its application to most practical flows infeasible.

The additional resolution in the wall-normal direction is necessary to resolve the high gradients resulting
from the no-slip boundary condition. Even so, the physics of the inner layer must still be neglected since
the grid cannot represent it in the wall-parallel directions. Some savings can be achieved using an adaptive-
mesh refinement strategy to decrease the computational cost [5]. If these computational costs are to be min-
imized, the inner region that is adjacent to the wall must be appropriately modeled.

The main challenge that must be addressed is presented by the no-slip wall boundary condition that is felt in
three ways: (1) by removing mass flux near the wall, albeit a decreasing amount with increasing Reynolds num-
ber; (2) by imposing a wall shear stress that is transported and must be represented in the simulation of the outer
boundary-layer and interior regions of the flow [3]; (3) by local heating, attendant entropy production, and
energy transport, even though the latter is important only in high-speed, wall-bounded flows that are not con-
sidered here. If in simulating the outer boundary-layer and interior flows the no-slip condition is not explicitly
incorporated, its consequences must be, in the sense of an inner/outer asymptotic expansion, here implemented
numerically. That requires the correct inner–outer matching condition to be imposed, in view of Items 1 and 2,
above, as well as Item 3 for high-speed-flow simulations [6] that is not part of the focus of this paper, however.

A simulation of the outer boundary-layer and interior flow regions that does not include the no-slip con-
dition and the (in-the-limit) singular region that results from it must be informed of the consequences of the
missing dynamics. In the proposed approach and for the flow at hand, this is achieved using the zero pressure
gradient (ZPG) Law-of-the-Wall [7] as a boundary condition that conveys the required wall shear-stress infor-
mation as a necessarily independent input to the simulation scheme.

The quality of the simulation results using this approach depends strongly on controlling the coupling
between the physical model and the numerical approximations. This requires understanding of the compli-
cated specific interaction between the subgrid closure and the numerical implementation of the (effective)
boundary conditions at the wall [8].

The importance of the subgrid scale model has been highlighted (e.g., [9]) although it appears that the most
important source of variability of LES results lies in the wall treatment itself [10]. A widely used method has
been to use the dynamic Smagorinsky subgrid closure together with a wall shear-stress model, also called a
wall function, as documented in a number of specific models [11].

A first wall model that can be viewed as providing an approximate boundary condition was introduced by
Deardorff [12] who constrained the wall-normal derivatives of the wall-parallel velocity to recover the logarith-
mic law, on average. This was followed by Schumann [3], who first used a wall function relating the instan-
taneous velocity in the first cell off-wall to the total shear stress, thereby enforcing the correct momentum flux.
A large number of methods and refinements have been proposed to obtain the functional dependence of the
wall function on available fields of the LES [13–21]. An alternative approach is to use a zonal model in which
an auxiliary, very fine mesh is used next to the wall to solve a boundary-layer type equation and resolve the no-
slip boundary condition. Reynolds-averaged Navier–Stokes (RANS) or simplified wall laws derived from
these equations and complemented by blending functions to diminish the contribution from the eddy viscosity
near the wall are used here, with a dynamic Smagorinsky model (e.g., [22–26]). Yet another approach, called
detached-eddy simulation (DES), does not require explicit blending functions, solving, instead, a transport
equation for the turbulent kinetic energy close to the wall and blending with the LES in the resolved flow
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region [27]. Approaches that include generalizations of the dynamic Smagorinsky subgrid-scale model that is
made aware of the scale non-invariance as the wall is approached have also been developed [28], as well as
formulations that include more-detailed stochastic effects [29–31]. Some work has been carried out to incor-
porate anisotropic effects and backscatter in the subgrid closure itself [32–34], whose importance is recognized
at the wall. While results obtained with these techniques may be satisfactory at low or moderate Reynolds
numbers in complex geometries and even moderately high Reynolds number in simple geometries, there
remains a need for improved mathematical and modeling to enable robust LES for general flows at the high
Reynolds numbers of practical interest. In this respect, and for a method to be sufficiently general, the subgrid
closure must inevitably be formulated using a parameterization with localized support, i.e., no averaging along
the wall-parallel directions or any other global operator. Additionally, the numerical implementation details
and the discretization errors must be carefully considered.

There exist variations in technique, mostly using the dynamic Smagorinsky model, that involve a number of
modeling parameters whose physical justification is still a matter of research. Nevertheless, available refer-
ences suggest that important deficiencies in these models remain when average statistics are compared with
expected inner scalings of these flows.

It could be argued that the idea of Schumann [3] is physically reasonable and one would expect this closure
to be satisfactory, provided the physical dynamics are correctly represented in the simulations and Reynolds
number and numerical issues, including grid cell size next to the wall, are correctly implemented. As Cabot and
Moin [11] note, it is now largely accepted that the majority of the deficiencies with wall-function treatments for
coarse resolution LES lie in both the numerical approximations used to represent the strain tensor with low-
order (one-sided) differences next to the boundary and in the inaccuracies of the physical subgrid model itself
when applied in the vicinity of the wall. Therefore, implementation details of both the numerical and subgrid
models are central to this type of flow modeling.

The discussion above suggests that there are two main approaches to tackling the wall-closure problem. In
one approach, research is concentrated in understanding why the simple, but physically based, wall shear-
stress closures perform only marginally well, while other research avenues investigate more complex wall clo-
sures. This paper reports results of the former approach, using the particular but important example of chan-
nel flow at high Reynolds numbers as an illustration.

The discussion describes a formulation that attempts to minimize ad hoc modeling and numerical choices by
considering near-wall modeling from the point of view of a simulation of outer boundary-layer and interior
flow scales only. This requires the specification of a proper boundary condition that is compatible with the
flow and, at the same time, conveys the correct average physics to the resolved flow scales. In this context,
the subgrid-scale model close to the wall must act as if there is no wall present, behaving mostly as in the free
shear-flow regions of the outer-boundary layer and interior of the domain. This is achieved by an appropriate
extension of the velocity field that effectively continues the flow seen by the subgrid model below the wall. The
major advantage of this formulation is that no ad hoc blending functions or numerical parameters are required
and the quality of the statistical results is high over a range of Reynolds numbers.

2. Mathematical formulation

We consider a domain of size Lm in the xm directions with m ¼ 1; 2; 3, respectively. The streamwise direction
is x1, the wall-normal coordinate x2 and the spanwise direction x3. The Favre-filtered form of the Navier–
Stokes (momentum) equations is used to simulate the flow,
o�q~ul

ot
þ oð�q~ul~um þ �pdlm � �rlm þ slmÞ

oxm
¼ �q~f l; ð1Þ
together with the mass- and energy-conservation equations,
o�q
ot
þ o�q~um

oxm
¼ 0; ð2Þ

oE
ot
þ oððE þ �pÞ~um þ �qm � �rmq~uq þ qT

mÞ
oxm

¼ �q~f q~uq; ð3Þ
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where repeated indices denote summation, t, is time, and resolved quantities are given by �q for density, ~ul the
velocity components, �p the pressure, �rlm the Newtonian stress tensor, E total energy, �qm the heat flux, and ~f l

the body force. Overbars denote Reynolds-averaged quantities, given for an arbitrary field / by,
�/ðxm; tÞ ¼
Z 1

�1
Gðxm � x0mÞ/ðx0m; tÞdx0m; ð4Þ
where G denotes the filter kernel and it is understood that the integral is a three-dimensional convolution in
space. Tilde denotes Favre-averaged quantities given by ~/ ¼ q/=�q. There is no distinction between Favre and
conventionally filtered quantities for incompressible constant-density flow. In some occasions, we will refer to
~u1, ~u2, ~u3 as ~u, ~v, ~w, respectively, and x1 ¼ x, x2 ¼ y, x3 ¼ z to simplify the notation. The subgrid terms that need
to be modeled are the subgrid-stress tensor and the subgrid heat flux,
slm ¼ �qðgulum � ~ul~umÞ; ð5Þ
qT

m ¼ �qð gcpTum � ~cp
eT ~umÞ; ð6Þ
respectively, where cp denotes the specific heat of the mixture at constant pressure and eT the temperature.
State and constitutive relations are given by,
E ¼ �p
ðc� 1Þ þ

1

2
�qð~ul~ulÞ þ

1

2
sll; ð7Þ

�rlm ¼ �l
o~ul

oxm
þ o~um

oxl
� 2

3
dlm

o~uq

oxq

� �
; ð8Þ

�qm ¼ �k
oT
oxm

; ð9Þ
where c is the ratio of specific heats and �l and �k denote the filtered dynamic viscosity and heat conduction
coefficients, respectively. The filtered pressure, �p, is determined from the ideal equation of state �p ¼ �qReT ,
where R is the ideal-gas constant for the fluid. Since our subgrid model provides the complete subgrid-stress
tensor, �p is the actual resolved pressure field. This approach differs from the incompressible formulation using
the Smagorinsky subgrid closure, for example, where the non-deviatoric part of the subgrid-stress tensor is
lumped together with the pressure.

For compactness of notation, we define the vector of conservative state variables, fQlg ¼ f�q~u; �q~v; �q~w; �q;Eg,
for the resolved momentum, mass, and total energy. Similarly, the second term appearing in the left-hand side
of Eqs. (1)–(3), generally referred-to as the flux tensor, is defined as,
F lm ¼
qulum þ pdlm � rlm l 6 3;

qum l ¼ 4;

ðE þ pÞum þ qm � rmquq l ¼ 5:

8><>: ð10Þ
The corresponding filtered counterpart, F lm, is obtained by applying Eqs. (4)–(10). This last operation leads to
the subgrid-closure problem.

2.1. Boundary conditions

In a ‘resolved’ LES simulation, the customary no-slip boundary condition is imposed at the wall, i.e.,
~u ¼ ~v ¼ ~w ¼ 0: ð11Þ

In the modeling approach adopted here, where only outer boundary-layer and interior scales of the wall-
bounded flow are simulated, this boundary condition, Eq. (11), is replaced by an alternative set of boundary
conditions that is compatible with the dynamics captured in the simulation of the resolved-flow regions. This
set of boundary conditions must be consistent with the numerical implementation and, dynamically, have a
small impact on the quality of the first- and second-order statistics prediction. The original idea of Schumann
[3] offers a boundary closure choice. In this approach for a non-transpiring boundary, the total momentum
flux tangential to the wall is specified in the form of,
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F amnm ¼ sw;að�q; ~ui;Dxm; l; surface propertiesÞ; ð12Þ

where the Greek letter a denotes wall-parallel directions (a ¼ 1; 3 in our case) and nm is the normal to the sur-
face pointing in the direction outwards of the fluid domain. In this expression, the function sw;a represents a
closure, here algebraic, that depends parametrically, in principle, on all available (resolved) fields.

The derivation of these boundary conditions uses Eq. (4) and integration by parts of the Navier–Stokes
equations to derive Eq. (1). The conceptual filter operator, G, introduced in Eq. (4) only from a formal point
of view, must now have compact support. This implies that the resolved (filtered) equations remain well-
defined only to a certain minimum distance off the wall, from the point of view of the large turbulent scales.

We will not dwell on several theoretical extensions available in the literature that accommodate for the
complexities that arise if the filter kernel is allowed to intersect the wall. In our case, this minimum distance
controls the location of the first grid-node off the wall. The present development assumes a filter function, G,
that is a top-hat filter kernel, given by,
Gðxm � x0mÞ ¼
1

DV
1 for jxm � x0mj 6 Dxm

2
;

0 otherwise;

(
ð13Þ
where DV ¼ Dx1Dx2Dx3. The filtered momentum equation, Eq. (1), evaluated at x2 ¼ Dx2=2 from the wall, can
be rewritten in the equivalent form,
o

ot
1

DV

Z
DV

qul dXþ 1

DV

Z
DV

o

oxm
ðqulum þ pdlm � rlmÞdX ¼ �q~f l; ð14Þ
where dX ¼ dx1 dx2 dx3. The element DV is now decomposed into DV O

S
DV I (see Fig. 1) where the height of

the thin volume DV I is dx2 � Dx2. For near-wall modeling, we require that the majority of flow features asso-
ciated with near-wall structures are contained within DV I. Utilizing Gauss’s theorem on V O and V I for the
wall-parallel momentum components, ua, the second term in the left-hand side of Eq. (14) can now be approx-
imated and rewritten in divergence form,
Z

DV

o

oxm
ðquaum þ pdam � ramÞdX

�
Z

DV O

o

oxm
ðquaum þ pdam � ramÞdX

¼
Z

DSO

ðquaum þ pdam � ramÞnm dS

¼ ðF Oþ

a1 � F O�

a1 ÞðDx2 � dx2ÞDx3 þ ðF Oþ

a2 � F O�

a2 ÞDx1Dx3 þ ðF Oþ

a3 � F O�

a3 ÞDx1ðDx2 � dx2Þ; ð15Þ
δx2

S2
O+

S1
O+

S2
O-S1

O-

ΔVO

ΔVIΔx1

Δx3

Δx2

S1
I+

S1
I-

S2
I+

S3
O+

S3
I-

S3
I+

S2
I-

S3
O-

Fig. 1. Sketch of a grid cell next to the wall.
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where we have used the notation F O�

an to denote the surface-averaged values of F an at the bottom/left/back (�)
or top/right/front (+) surfaces SO�

n of the control volume DV O normal to direction n,
F O�

a;n ¼
Dxn

DV

Z
SO�

n

F a;n dS: ð16Þ
Applying the same approach to the average momentum equation in the DV I volume, gives,
o

ot

Z
DV I

qua dXþ ðF Iþ

a1 � F I�

a1Þdx2Dx3 þ ðF Iþ

a2 � F I�

a2ÞDx1Dx3 þ ðF Iþ

a3 � F I�

a3ÞDx1dx2 ¼ DV I�q~f a: ð17Þ
This equation can be rewritten to express F Iþ
a2 as a function of the other terms, i.e.,
F Iþ

a2 ¼ F I�

a2 þ dx2�q~f a �
1

Dx1Dx3

o

ot

Z
DV I

qua dX� ðF Iþ

a1 � F I�

a1Þ
dx2

Dx1

� ðF Iþ

a3 � F I�

a3Þ
dx2

Dx3

: ð18Þ
The so-called equilibrium assumption neglects all terms but the first on the right-hand side and yields,
F O�

a2 � F Iþ

a2 � F I�

a2 ¼ �sw;a: ð19Þ

These are nonlinear boundary conditions since F a;n and sw;a cannot be expressed as linear combinations of the
resolved velocity and its gradients. In our case, these two boundary conditions are,
ð�q~ua~u2 � �ra2 þ sa2Þ ¼ �sw;a; ð20Þ

when evaluated at the walls, y ¼ �h.

The first underlying feature of Eq. (19) or Eq. (20) is to assume an instantaneous correlation between the
available fields and the shear stress, without any temporal lag, as appropriate to the low Mach number flow
under consideration here. This may be justified for computational grids of hundreds or even thousands of
inner units at high Reynolds numbers, since the filter or average volume implied by the LES is sufficiently large
that fluctuations do not contribute systematic errors in the mean velocity profiles. The second underlying
assumption is to neglect the actual thickness of the inner zone, which occupies a small sub-volume of the first
grid cell, with respect to the volume of the outer zone in the first grid cell next to the wall. This can be justified
because the ratio of these two scales becomes vanishingly small at the high Reynolds numbers of interest. The
third assumption is to neglect small temporal scales at the wall. These temporal scales are filtered out, both by
the boundary-condition model and by the time step taken by the numerical method that is controlled by the
resolved, outer-region of the flow.
2.2. Subgrid-scale model

The stretched-vortex subgrid-scale model, originally developed for incompressible LES [35] and extended to
compressible flows [36], is used to provide estimates of the stress tensor, sim, and turbulent heat flux, qT

m. In this
model, the flow within a computational grid cell is assumed to result from an ensemble of straight, nearly axi-
symmetric vortices aligned with the local resolved strain rate tensor. This model is based on subgrid elements
in the form of spiral vortices that are local approximate solutions of the exact Navier–Stokes equations [37].
The resulting subgrid stresses and energy flux are [36],
slm ¼ �q~kðdlm � ev
le

v
mÞ; ð21Þ

qT
m ¼ ��q

Mc

2
~k1=2ðdml � ev

mev
lÞ

oð~cp
eT Þ

oxl
; ð22Þ
where ~k ¼
R1

kc
EðkÞdk is the subgrid energy, ev ¼ fev

lg is the unit vector aligned with the subgrid vortex axis

and kc ¼ p=Mc represents the largest resolved wavenumber with Mc the subgrid cutoff scale. The subgrid tur-

bulent kinetic energy, ~k, is estimated by assuming a spiral vortex [37], whose Kolmogorov-like energy spec-
trum for the subgrid motion is given by,
EðkÞ ¼ K0�
2=3k�5=3 exp½�2k2m=ð3j~ajÞ�; ð23Þ
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where K0 is the Kolmogorov prefactor, � is the local cell-averaged dissipation (resolved flow plus subgrid
scale), m is the kinematic viscosity taken as ~l=�q, and ~a ¼ eS lmev

le
v
m is the axial strain along the subgrid vortex

axis, where
eSlm ¼
1

2

o~ul

oxm
þ o~um

oxl

� �
; ð24Þ
denotes the resolved rate-of-strain tensor. The subgrid vortex is presumed to be aligned, ev
l , in the direction

of the principal extensional eigenvector of eSlm. This ansatz has been shown to work well in free-shear flows
[38].

To close the model, the group prefactor, K0�
2=3, must be calculated for each cell from the resolved flow. This

is obtained by a structure–function matching [38–40], where the second-order velocity structure function,
F 2ðrÞ with separation r, when averaged over the surface of a sphere of radius M, gives
F 2ðMÞ ¼
4

M

Z p

0

Eðs=MÞ 1� sin s
s

� �
ds: ð25Þ
The spectra, Eq. (23), and the assumption that the exponential can be ignored when evaluating at the sepa-
ration scale M, give the group prefactor,
K0�
2=3 ¼ F 2ðMÞ

M
2=3A

; ð26Þ
where A ¼ 4
R p

0
s�5=3ð1� s�1 sin sÞds � 1:90695. Frequently, M and Mc are taken to be the average grid spacing,

ðDx1Dx2Dx3Þ1=3, as in the present simulations, and the spherical average of the structure function is computed
as a local estimate using a six-point stencil of the resolved velocity components,
F 2ðMÞ ¼
1

6

X3

l¼1

X3

m¼1

ðd2~ulÞm; ð27Þ
where ðd2~ulÞm ¼ ð~ulðxþ emDxmÞ � ~ulðxÞÞ2 þ ð~ulðx� emDxmÞ � ~ulðxÞÞ2 denotes the square of the lth velocity
component difference in the Cartesian direction em (not related to the subgrid vortex alignment direction
ev) at the point x ¼ fx1; x2; x3g [38].
2.3. Wall-function model

For a statistically homogeneous and stationary flow in the wall-parallel directions, an ensemble-averaged
quantity is defined by,
�/ðyÞ ¼
Z 1

�1
UPðU; yÞdU; ð28Þ
where P denotes the probability-density function of / at location y and U denotes the state-space variable
associated with /. The wall function represents the relationship that is observed, experimentally, between
the independent wall-normal coordinate and the ensemble-averaged wall-parallel velocity. This relationship
is generally expressed in terms of inner variables,
yþ ¼ yus

m
; ð29Þ
in the form called the ‘‘Law-of-the-Wall” and given by,
uþ ¼ f ðyþÞ; ð30Þ

where uþ ¼ �u=us is the inner-scaled ensemble-averaged velocity with friction velocity us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�sw=�qw

p
and where

the subscript ‘w’ denotes wall values. To render the discussion less cumbersome in this section, the y coordi-
nate is measured starting at zero in the normal direction to each wall and increasing towards the inside of the
flow domain.
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For simplicity, we assume a two-layer model with Millikan’s zero pressure gradient (ZPG) logarithmic law
of the wall, whose origin goes back to Prandtl, which parameterizes the average velocity profile and has the
form,
f ðyþÞ ¼
1
j lnðyþÞ þ B; if yþ > y�;

yþ; if yþ 6 y�:

�
ð31Þ
In the proposed implementation it is assumed that this relationship holds instantaneously at each cell next to
the wall. The value of y� is the matching point of the two profiles, i.e.,
1

j
lnðy�Þ þ B ¼ y�:
The von Kármán constant, j, and the slope intercept, B, are accepted here with the values of 0.4 and 5, respec-
tively. Some variation of these constants is reported in the literature but we have accepted these values as rep-
resentative [41,42].

The main difficulty with Eq. (30) is that �sw is not known a priori. The wall-function closure approach
assumes �s w ¼ sw and inverts Eq. (30) for a specific value of yþ and �u to recover us, according to,
us ¼ �ug
y�u
m

� �
: ð32Þ
where g is obtained by inverting Eq. (30) with a specific choice of f given by Eq. (31). Once us is known, the
shear stress, sw, can be expressed as,
sw ¼ signð�uÞ 	 �qwðj�ujgðyj�uj=mÞÞ2; ð33Þ

such that the relationship is valid for both positive and negative �u. We note that the dependence of �u on y

should be such that, ideally, the value of sw that is inferred using resolved-flow information near the wall
should be independent of y, for small y; certainly if the Law-of-the-Wall is to be obeyed.

Alternatively, one may use the model of Nickels [43], for example, to estimate the effect of the small but
finite pressure gradient in the channel flow with a smooth wall, which closely osculates the classical ZPG
parameterization but extends to non-ZPG boundary layers. Defining the non-dimensional pressure-gradient
parameter, pþx ¼ ðm=qwu3

sÞdP=dx, and using the known pressure gradient for a periodic channel flow that is
related to the shear stress through �q~f 1 ¼ �dP=dx ¼ sw=h, gives,
pþx ¼ �
1

Res
: ð34Þ
This is negligible in the high Reynolds number simulations we discuss here, according to the criteria proposed
by Nickels [43], indicating that the ZPG Law-of-the-Wall should be more than adequate for the flow
simulated.
3. Discretization

A collocated finite-difference discretization is employed where all variables are defined at the center of the
computational cells. The nodal coordinates are equally spaced by Dxm ¼ Lm=N m, where Nm is the number of
grid points in the corresponding direction. The variable arrangement is such that all fields are collocated at the
center of the grid cells. Thus, for a physical wall located at y ¼ x2 ¼ �h, the center of the first off-wall cell is
x2 ¼ Dx2=2� h. This arrangement is similar to that of the wall-parallel velocity components in staggered
meshes and some wall-shifted discretizations of channel flow [44], while the wall-normal velocity is arranged
differently in these alternative discretizations.

A finite-difference solver suitable for the simulation of the compressible LES equations is used to perform
the present simulations [45]. In order to minimize interference of the numerical truncation error with the LES
subgrid-scale model [46], a second-order-accurate, 5-point-wide stencil is used that is optimized in wavenum-
ber space for LES [47]. This solver uses skew-symmetric derivative operators and third-order Runge–Kutta
time integration. No explicit filters of any type are used in this formulation. Furthermore, while the equations
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solved are for compressible flow, we selected a Mach number that is sufficiently low to minimize compressibil-
ity effects [6]. All test simulations correspond to a pressure-driven turbulent channel flow with a channel cen-
terline mean Mach number of 0.15 and an adiabatic wall boundary condition for the energy equation.

Eqs. (2) and (3) are discretized in space at grid locations, xi ¼ Dxði� 1=2Þ, yj ¼ Dyðj� 1=2Þ � h, and
zk ¼ Dzðk � 1=2Þ where i; j; k denote indices varying from 1 to N 1;N 2 and N 3, respectively. Therefore, a field
with a spatial dependence /ðx; y; zÞ is approximated at the locations /ði; j; kÞ ¼ /ðxi; yj; zkÞ (temporal depen-
dence omitted for clarity).

Rewriting the finite-difference equations in terms of the fluxes of mass, momentum, and energy, we have,
oQl

ot
¼ �DF lm

Dxm
þ �q~f l: ð35Þ
Boundary conditions are prescribed according to the discussion in Section 2.1 to close the system of Eqs. (2)
and (3) at the walls. Periodic boundary conditions in the x and z direction are used.

For the purposes of illustration of the approach described in this paper, the specific choice of the finite-dif-
ference stencil, such as order of accuracy and stencil width, does not play a role in the derivation of the bound-
ary condition and subgrid closure at the wall. These will influence convergence rates and the minimum number
of points required to resolve the flow structures, but will not affect the numerical issues associated with the
physical closure of the inner zone described in this paper. Manipulation of the discrete equations in the form
of Eq. (35) plays a crucial role in the treatment, as will be shown, however, and is not in accord with typical
practice. Finite-volume discretizations lead most naturally to this form of the equations, but when using finite
differences further operations must be performed to recover the flux form. It is sufficient to use the flux form
only for those cells next to the wall; all other cells can be handled in the standard differential form.

3.1. Wall-function evaluation

The required terms in Eq. (20), sw;1 and sw;3, are now closed by assuming that, for high Reynolds number
flow, the first cell in the computational domain extends well within the logarithmic-law region, e.g., yþ > 30.
In these conditions, the Law-of-the-Wall is assumed to hold approximately locally and instantaneously
through a functional relationship,
sw;1 ¼ signð�uyÞ 	 �qwðj�uyjgðyyj�uyj=mÞÞ2; ð36Þ
sw;3 ¼ signð�wyÞ 	 �qwðj�wyjgðyyj�wyj=mÞÞ2; ð37Þ
where
�uy � ~uðx; yy; z; tÞ; ð38Þ
�wy � ~wðx; yy; z; tÞ: ð39Þ
The coordinate yy denotes the location where the wall function is evaluated to recover the shear stress at the
wall. In our case, we chose yy ¼ Dy=2. This is a split-type wall model, where each wall-parallel direction is trea-
ted independently. It is also possible to implement a non-split model in which the coordinates are first rotated
to be aligned with the wall-parallel velocity direction [48]. No measurable difference was observed using this
approach, likely because ~u
 j~wj for the Reynolds number and grid sizes considered here. The results reported
are only with the split technique.

Instantaneous wall functions have been used previously [11] and result in what is also called the equilibrium
stress-balance model in the context of turbulent boundary-layer modeling. The implementation described here
departs from previous work in the manner in which the boundary condition is applied and coupled with the
subgrid scale model according to Eqs. (41)–(43).

As will be shown, the closure of Eq. (31) plays an important role. We deliberately avoid a more-complex
expression for f that could accommodate and represent the requisite physics with an improved parameteriza-
tion and increased fidelity to illustrate the methodology and to limit the number of free parameters of the
model. Only well-known and understood properties of the turbulent boundary layer at (near) zero pressure
gradient are used in the flow simulated. In particular, while a suitably blended functional form for f could
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be used, inner–outer matching is designed to occur in the logarithmic region and the inner (viscous) layer is
only included to accommodate possible instantaneous fluctuations that may dip into the linear viscous regime.
It is certainly possible and desirable, if not necessary in general circumstances [16], to improve on Eq. (31) by
including complex geometrical effects as occur in recirculation zones [49], pressure-gradient effects [43] extend-
ing to flow separation, wall roughness, and even the stochastic variability between near-wall velocity and shear
stress [30,31]. Such parameterizations, however, are unnecessary to simulate the flow at hand and not
employed here. This point is discussed further below.
3.2. Discrete boundary conditions

To minimize compounding of numerical and modeling errors, the boundary conditions, Eqs. (36) and (37),
must be enforced directly as part of Eq. (35) to ensure discrete momentum conservation in the mean. For this
reason, the flux form of the governing equations is important. Use of Eq. (20) as a boundary condition for the
LES implies, effectively, that the average momentum transfer from the inner region is applied to the outer
resolved scales of the LES. This traction-type boundary condition is mathematically well-posed [50] and
replaces two no-slip boundary conditions for ~u and ~w appearing in Eq. (11). Consideration of mass conserva-
tion within the first computational cell in contact with the wall shows that, to leading order, we must retain the
no-penetration boundary condition, ~v ¼ 0, in the wall-normal direction to enforce global mass conservation.

Some care is required when evaluating F 12ði; 3=2; kÞ and F 32ði; 3=2; kÞ. Fig. 1 shows a sketch of the grid
arrangement next to the wall. For a split numerical method where each direction is treated independently,
the horizontal fluxes can be determined with no difficulty. On the other hand, the vertical flux at x2 ¼ Dx2,
SOþ

2 , must be determined paying special attention to the dependent variables involved. In fact, for a sec-
ond-order centered stencil, the momentum flux F 12ði; 3=2; kÞ, contains a contribution from the subgrid stresses
calculated at the center of the first cell, that is,
F 12ði; 3=2; kÞ ¼ regular convective flux partþ 1

2
½s12ði; 1; kÞ þ s12ði; 2; kÞ�: ð40Þ
However, calculation of s12ði; 1; kÞ requires knowledge of ~ui below the wall surface, or different formulas to
Eqs. (24) and (27) to be used to determine all the quantities required in the subgrid model. We refer here
to the methodology for extending the stencils used in the subgrid model to determine the subgrid stresses next
to the wall (biased stencils). The issue arises for any subgrid model that involves gradients. The primary con-
cern is the determination of the subgrid stresses sij at these grid cells, using information that is consistent and
compatible with the differential equation and the boundary conditions. The method implemented extrapolates
the velocity field outside of the flow domain in halo or ghost cells below the wall. This extrapolated field is
used to determine the subgrid stresses only and not any other terms of the discretized governing equations.
For the lower wall of the channel, the extrapolations are,
~uði; 1þ n; kÞ ¼ ~uði; 1; kÞ þ nDx2ð~uði; 2; kÞ � ~uði; 1; kÞÞ; ð41Þ
~vði; 1þ n; kÞ ¼ �~vði;�n; kÞ; ð42Þ
~wði; 1þ n; kÞ ¼ ~wði; 1; kÞ þ nDx2ð~wði; 2; kÞ � ~wði; 1; kÞÞ; ð43Þ
where n ¼ �1;�2; . . .. The extrapolations implement the no-penetration boundary condition by reversing
(reflecting) the vertical velocity component. It may be advantageous to use higher-order extrapolation, instead
of linear (first-order) extrapolation, although this has not been pursued because the present numerical method
employed is only second-order accurate (away from boundaries). The use of halo or ghost cells, j 6 0, is not
mandatory, and one can implement the extrapolation formulas directly as part of the subgrid model when
approaching the wall. We note that no additional boundary data are contained in Eqs. (41)–(43), given that
the extrapolation relies only on boundary data already imposed, along with information on computational
cells inside the domain, derived from the LES equations themselves. Therefore, the extrapolation does not rep-
resent an additional boundary condition, according to the theory of partial differential equations (e.g., [51]).

An important characteristic of the present approach is that no damping functions are required to gradually
reduce the magnitude of the subgrid stresses as the wall is approached. This has been shown to be necessary
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with the constant-coefficient Smagorinsky model, for example, if first-order statistics are to be recovered
[52,11]. Damping functions are not generally used with the dynamic Smagorinsky model in so-called
‘‘resolved” LES or even in simulations at moderately high Reynolds numbers that do not resolve the viscous
subrange [53]. Nevertheless, some treatment of the eddy viscosity close to the wall appears necessary in coarse
simulations of high Reynolds number channel flow [20].

4. Simulation results

The performance of the new boundary formulation and subgrid model is tested in a pressure-gradient dri-
ven turbulent channel flow configuration. The dimensions of the computational domain for all cases are
L1 ¼ 8ph, L3 ¼ 3ph, where h is the channel half height. The grid is uniform in each direction and no adaptive
mesh refinement is employed. Table 1 lists the number of points used in the uniform grids of the LES in all
directions, the friction-based Reynolds number,
Table
Param

DNS
A2K
B20K
B100K
B1M

Table
Averag

A2K
B20K
B100K
B1M
Res �
ush
m

ð44Þ
and the value of j used for the wall-function boundary condition, Eq. (31). For comparison, we have matched
the parameters of the recent DNS of Hoyas and Jiménez [54] at Res ¼ 2003 in case A2K (bulk Reynolds num-
ber 87,180). The non-uniform DNS grid relies on a total of N DNS ¼ 1:79	 1010 grid points (cf. Table 1) and
clustering is used close to the walls to improve resolution and reduce computational cost.

Table 2 lists some statistics obtained from the simulations, with angle brackets denoting wall-parallel planar
averages. The first column denotes the average value of the location of the first point above the wall in wall
coordinates. The second column lists the standard deviation of yþ1 , denoted as ryþ

1
. The third column denotes

the ratio of volume-averaged subgrid kinetic energy,
Ksgs ¼
1

2h

Z h

�h
h~kidy;
to the total volume-averaged kinetic energy, K, for each case. The last column denotes the normalized error
between the value of the logarithmic-law intercept constant, B, in Eq. (31) and the value measured from the
simulations, Bsim, where
EB ¼
Bsim � B

B
: ð45Þ
The error in the intercept constant is always negative with some statistical variability. It is unclear if this is a
result of the coarse resolution or the limited domain size used. Nevertheless, the maximum error in B is of the
1
eters of the DNS [54] and the present LES simulations

N1 N2 N3 N total ¼ N1N2N3 Res j

6144 633 4608 1:79	 1010 2003 –
578 46 216 5:74	 106 2003 0.4
800 64 302 1:54	 107 2	 104 0.4
800 64 302 1:54	 107 105 0.4
800 64 302 1:54	 107 106 0.4

2
ed quantities from LES simulations

hyþ1 i ryþ
1

Ksgs=K EB

41.73 3.16 0.170 �0
312.5 17.47 0.166 �0.120
1562 71.52 0.209 �0.098
15,625 540.1 0.213 �0.123
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order of 12%, a number that is small considered the large values of hyþi considered here. It may be argued that
performing the inner–outer matching at such high values of the scaled y coordinate, yþmatch ¼ yy, would be ex-
pected to incur systematic error with increasing yy. Certainly, one could employ the Coles’s [55] Law-of-the-
Wall/Law-of-the-Wake parameterization to address this concern. This was not attempted here because it
would introduce an additional parameter and, as can be seen in Table 2, the small error in B does not exhibit
a systematic increase with increasing yy.

We discuss the first case, A2K, and the comparisons with the DNS, since this constitutes our validation run.
Fig. 2 shows a comparison of the average streamwise velocity for case A2K and the DNS result. As can be
seen, even with as few as 23 points across the half channel height, the results are satisfactory. The first point
in the computational mesh is, on average, at yþ1 � 42. Even the few points next to the wall agree well with the
DNS result, with a total mass flux error of only 1.7%. Fig. 3 shows comparisons of the subgrid and total veloc-
ity intensities in the three directions as well as of the shear-stress profiles. As can be seen, at this level of res-
olution with significant subgrid contributions, the agreement between DNS and LES is good. The effect of the
wall model is limited to the first cell next to the wall, as commonly found in this type of modeling [53]. This is
to some extent to be expected, since the boundary modeling only contains information about average stresses
at the wall and no fluctuation model is provided. Fig. 3 shows a relative peak odd-grid oscillations of 3.4%,
with respect to the mean stress profile, in the first few cells next to the wall on the total normal, spanwise and
shear-stress profiles. It is not clear at this time why these small oscillations arise or what would be required to
remove them, or if it is possible to eliminate them from the simulations within the modeling approach pursued
here. This issue is postponed to the next section where we discuss some general limitations of the wall-function
modeling approach employed.

Next, we increase the friction Reynolds number while keeping the number of points in the simulation con-
stant. Fig. 4 shows comparisons of LES results for the average streamwise velocity with increasing friction
Reynolds numbers, up to Res ¼ 106. All cases collapse reasonably well when plotted in inner coordinates,
despite the increasing scaled coarseness of the simulations and the extremely high Reynolds numbers. No
parameters are modified, apart from the Reynolds number, to perform these simulations. Close inspection
of the average velocity profiles seems to indicate what appears as a undershoot of the velocity profiles in
the lower yþ region of each simulation. More careful investigation shows that this is a display artifact that
is a consequence of the slightly lower logarithmic-law intercept recovered from the simulations and reported
in the last column of Table 2.

Another feature of the subgrid closure is that it leads to the development a wake region, with no other
input, as a consequence of the coupling between the inner-scale modeling employed and the turbulence in
the resolved flow, even at rather coarse resolutions. This feature is not usually observed in coarse LES simu-
lations using the dynamic Smagorinsky model with wall-function closure, for example [11]. The wake part of
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Fig. 2. Comparison of the mean streamwise velocity of the LES (symbols) with DNS (line) at Res ¼ 2003.
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the profiles suggests a wake magnitude, i.e., a departure from the logarithmic law at the center of the channel,
of approximately one unit. This is well within the literature scatter for this quantity [56].

A second important derived quantity is the friction coefficient. This is defined as Cf ¼ 2ðus=UbÞ2, where U b

is the average bulk-flow velocity defined as
U b ¼
1

V

Z
V

~udX: ð46Þ
Cf is a fundamental quantity that LES should predict.
Fig. 5 shows the friction coefficient against the bulk-flow Reynolds number, Reb ¼ Ub2h=m, for all simula-

tions. The same plot includes the laminar result and the original correlation proposed by Dean [56],
Cf ¼ 0:073Re�0:25

b for the range 6 	 103
6 Reb 6 6 	 105. The DNS result [54] is also shown for reference.

The simulation results for Res ¼ 2003, DNS and LES, are seen to be in accord with the proposed correlation.
The variance between simulation A2K and the DNS is 0.18%. The cases for Res ¼ 20; 000 are beyond the limit
of validity of Dean’s correlation and there seems to be a tendency upwards with respect to this correlation, if
we consider the higher Reynolds number cases. While this behavior is supported by experience in high Rey-
nolds number boundary layers in unconfined flow, there is no experimental evidence for such high Reynolds
numbers in channel flow and we refrain from drawing any conclusions as to the predicted behavior of the fric-
tion coefficient at high Reynolds numbers for channel flow. Nevertheless, if taken at face value, the resulting
inferred wall shear stress represents a prediction.

An important attribute of the wall model employed is the instantaneous dependence of the shear stress on
the wall-parallel velocity. This implies a distribution of shear stresses at the wall. The wall-parallel velocity,
shear stress, and inner-scaled distance of the first grid next to the wall were extracted to investigate their var-
iability. Fig. 6 shows normalized probability distribution functions of the coordinate of the center of all the
first grid cells off-wall in terms of inner variables for all simulations. Essentially, this corresponds to all the
values of yþ1 from Eq. (29). We observe that the PDF of yþ1 at different Reynolds numbers scales well when
normalized with its mean and variance. Moreover, the probability of yþ1 < y� � 11 is extremely small, as
the values of hyþ1 i and ryþ

1
reported in Table 2 reflect.

Fig. 7 shows histograms of instantaneous streamwise velocity scaled with inner variables and the normal-
ized shear stress at both walls; angle brackets denote wall-parallel averages. Substantial fluctuations are
observed in sw;1, approximately 25% of the mean value, for case A2K. The profiles become narrower as the
Reynolds number increases owing to the increased scaled size of the cells and larger mean sw;1 with increasing
Reynolds number. Even though the closure is based on the application of the average Law-of-the-Wall, sub-
stantial variability is sustained by the use of this average relationship in an instantaneous manner. Neverthe-
less, this variability is insufficient to contribute measurable deviations in the statistical results. An a posteriori
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Fig. 5. Predicted and empirical friction coefficient dependence on bulk Reynolds number.
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estimate of the differences between using instantaneous values of ~ua, instead of Eq. (28) with a realistic P only
showed a discrepancy in sw;a inferior by 0.4% to the mean value.
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Finally, the spatial structure of the streamwise velocity field is also investigated. Fig. 8 shows isocontours of
~u at three different planes. The streamwise correlation is evident. This is also observed with other methods uti-
lizing wall functions or even more-complicated boundary-layer equation matching. These so-called ‘‘super-
streaks” are not physical and have sometimes been presented as a cause for concern within the modeling com-
munity. In our case, there is substantially more structure to the field, similar to what is observed in methods
utilizing stochastic forcing [31], but our results appear less disorganized. This streamwise correlation is com-
pletely destroyed by the time the center of the domain is reached and appears to be confined to the region close
to the wall. The higher degree of ‘‘randomness” in our results may also be associated with the use of the
stretched-vortex subgrid model that is known to exhibit rich fine-scale structure. Fig. 9 shows the average
one-dimensional spanwise spectra of ~u for the velocity in the first plane off-wall for all cases. We observe a
broad spectral content that we associate with the structural correlation observed in Fig. 8(a).

As the results show, the current closure offers improvements over results previously reported when using the
same ingredient, i.e., an instantaneous wall-function model. We do not compare with more involved closures
Fig. 8. Isocontours of the streamwise velocity at different planes parallel and perpendicular to the walls for simulation A2K: (a) y ¼ Dy=2;
(b) y ¼ h=2; (c) y ¼ h; (d) z ¼ 3ph=2; (e) x ¼ 0.
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that employ zonal models or even additional transport equations next to the wall, as in detached-eddy simu-
lation, since the comparison is on a different basis (in terms of the amount of information built into the mod-
els). Additionally, we do not suspect that the compressible nature of the equations plays any role in the
presented simulations. Other simulations at Res ¼ 2003 conducted at both lower and slightly higher Mach
numbers (not reported here), while characterized by different execution times, did not exhibit discernible dif-
ferences in the results reported [6]. We observed that discrete conservation led to improvements in the results,
but these were not as good as the results reported here. The final ingredient that improved the results involved
the correct extrapolation of the velocity field allowing the subgrid model to predict the subgrid stresses more
accurately in the cell wall, at x2 ¼ Dx2.

5. Discussion

The formulation of a wall-function closure for coarse LES, described above, uses the stretched vortex sub-
grid-scale model and utilizes a combination of elements introduced in the context of shear-stress closures of
other subgrid models, as discussed above. Several elements are incorporated simultaneously, such as low
numerical dissipation, discrete conservation and boundary condition separation, which seem to result in good
results for first-order statistics and acceptable results for second-order statistics. Despite the success, at least
two issues deserve further discussion. Firstly, it is expected that correct first-order statistics imply force bal-
ance, which is provided by the imposed shear stress closure. Secondly, there is the issue of second-order sta-
tistics which are shown in our simulations to drop below their expected values at the first grid cell close to the
wall but seem to recover quite rapidly by the fourth-grid cell (counting from the wall). The sharp transition
seems to excite a mild amount of Gibbs phenomena that are discernible in our results, perhaps because of
the low-numerical dissipation nature of the numerics. Each of these issues are discussed below.

5.1. Shear-stress boundary condition

For the sake of simplicity, we assume that the density is constant in the following discussion, which at the
low compressibility level of the flow makes the density effectively constant and uniform throughout the
domain. Simulating the outer region of the turbulent channel flow, consist in solving Eq. (1), which for the
streamwise momentum component reads,
oq~u
ot
þ oF 1;m

oxm
¼ � oP

ox
ð47Þ
with a boundary condition, F 1mnm ¼ swð~uÞ and ~v ¼ 0 at y ¼ �h, where oP=ox is the constant pressure gradient
that drives the flow. We have omitted all possible parameters appearing in the shear stress model, sw, to
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simplify the notation and retained explicitly only the argument that varies in space and time, namely ~u. Inte-
grating across the domain, V, gives
dðqUbÞ
dt

þ 1

V

Z
W

F 1;mnm dS ¼ � oP
ox
; ð48Þ
where, as before, U b denotes the volume-averaged velocity and S denotes the surface of the upper and lower
walls of the channel. Using the boundary condition, Eq. (12), we can transform the previous expression into
dðqUbÞ
dt

¼ � oP
ox
� �swðtÞ

h
; ð49Þ
where
�swðtÞ ¼
h
V

Z
W

swð~uÞdS ¼ 1

2

Z Z
swð~uðx;�h; z; tÞÞ þ swð~uðx; h; z; tÞÞdxdz: ð50Þ
Eq. (49) expresses the integrated conservation of momentum, which is valid instantaneously. There is no large
domain, homogeneity, or statistical stationary assumption built in this result.

The question of stability of the boundary conditions, Eq. (12), can be qualitatively investigated if �swðtÞ is
expressed in terms of U bðtÞ, that is �swðtÞ ¼ �sw½UbðtÞ�. We only require that this change of variables is per-
formed formally, since it may not be practical because the change of variable requires integration of the
Navier–Stokes solution and possibly monotonicity of the temporal dependence on time of both �swðtÞ and
UbðtÞ. This could, in principle, be achieved by increasing the domain size such that statistical variations are
averaged out from the integral quantities. Assuming this change of variable is certainly formally possible.
Eq. (49) then leads to a stable system if d�sw=dUb > 0, since the general solution of Eq. (49) is given to sec-
ond-order in ðUbðtÞ � U �bÞ by
qU bðtÞ ¼ qU �b þ qðUbð0Þ � U �bÞ exp � d�sw

dU b

ðU �bÞ
t

qh

� �
; ð51Þ
where U �b is the solution to,
� oP
ox
� �s wðU �bÞ

h
¼ 0: ð52Þ
This is generally the case for practical wall-function or shear-stress boundary conditions and it is the expected
physical behavior.

Inspection of Eq. (49) indicates that the pressure gradient is in statistical balance (the time-rate-of-change of
the bulk velocity averages to zero in a sufficiently large time interval) with the shear stress at the wall, inde-

pendently of the functional form of swð~uÞ. This is just a consequence of Eq. (50). Integrating the governing
equations with boundary conditions, Eq. (12), produces a velocity at the wall as required to keep Eq. (49)
in statistical balance with the pressure. This comes at a cost, resulting in a wall velocity, ~uðx;�h; z; tÞ, that need
not to agree with the experimentally expected logarithmic law of the wall. This implies that any mismatch
between the expected shear stress dependence on the velocity, whether from modeling error or numerics, will
result in a wall velocity which is inconsistent with the required result, as dictated by the conservation of
momentum. The difference will be such that Eq. (50) integrates to statistically balance the pressure gradient
at the cost of the value of ~u at the wall. The discretely conserving formulation employed implies that
Eq. (50) is enforced discretely.
5.2. Inner–outer matching

A second aspect of an outer region simulation is associated with the boundary condition for the wall-nor-
mal velocity. Conservation of mass requires that ~v vanish at the wall. This condition could be relaxed by
requiring that ~v possesses a statistical variation with zero mean. The main concern, expressed in the Schumann
[3] formulation, is that the vertical velocity is not identically zero at the location where the inner–outer match-
ing is performed, yþ > 30. At this location, the vertical velocity fluctuations can be of the order of half those of
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the streamwise component (a ratio that depends in general on the Reynolds number and the matching loca-
tion). Therefore, a boundary condition for the wall normal velocity could be imposed that has zero mean and
a specified variance. Unfortunately, once one decides to follow this path, correlations with the wall-parallel
velocities must be taken into account. Moreover, such statistical velocity boundary conditions require a cer-
tain degree of spatial and temporal smoothness for the numerical method to behave adequately. A white noise
stochastic signal leads to excessive dissipation and noise pollution at the boundary and cannot be used. It is
possible to construct a random signal with imposed one- and two-point spatial and temporal statistics and
which could be made physically reasonable. The main drawback is that, in order to preserve the statistical
properties of the signal, the boundary condition becomes non-local since the boundary condition of the whole
wall surface must be generated. We did attempt this technique and observed in short runs that the drop of the
second-order velocity statistics at the first grid cell and small amount of Gibbs phenomena disappeared.
Unfortunately, the formulation was not found to be stable in very long runs and further research is required.

We close the discussion by noting that the generality of the approach discussed relies, of course, on the
validity of the particular inner–outer matching condition. As noted above, the Law-of-the-Wall parameteri-
zation employed is appropriate for the smooth-wall, near-zero pressure-gradient case at hand. Other
smooth-wall parameterizations, such as the one proposed by Nickels [43] could be used to extend the validity
of the approach to favorable as well as unfavorable pressure gradient turbulent boundary layer wall condi-
tions, with the latter just short of boundary-layer separation. Of course, separation presents a challenge of
a different kind since, in the separation region, where op=oy cannot be ignored, the boundary-layer approxi-
mation itself breaks down and a structural extension of the approach proposed here is required. Once the
boundary layer separates, forming a local free-shear layer, the proposed scheme is able to handle the local
dynamics, with modeling of the reattachment region also posing a challenge. This phenomenology poses chal-
lenges that must eventually be addressed but are beyond the scope of this paper. A second issue briefly dis-
cussed above is the issue of wall roughness, in particular, at spatial scales below those resolved by the LES.
At least in the absence of significant pressure gradients, well-established parameterizations exist to accommo-
date (unresolved) wall roughness. While we do not consider this as presenting a fundamental challenge, it too
is beyond the scope of the present discussion. The combination of wall-roughness and imposed pressure-gra-
dient effects is a topic of current research and a numerical simulation based on the methodology documented
above must await the results of such research.

6. Conclusions

We present a numerical and physical subgrid closure for simulating the outer scales of turbulent wall-
bounded flows using large-eddy simulation. Good predictions of important low-order statistics of the
outer-region of turbulent channel flow are documented. The method requires the use of a wall-function closure
formulated directly on the conservatively discretized momentum equations. We show that the presence of the
wall requires special attention to the details of how the subgrid model is evaluated next to the wall. This is
achieved by constructing a surrogate velocity field used by the subgrid-scale model that consists of an extrap-
olation of the velocity field within the computational domain. Finally, the stretched-vortex model is used away
from walls. In this treatment, one recovers reasonably good first- and second-order statistics with isotropic
and uniform mesh spacing. The use of empirical damping functions is not required. Only the (logarithmic)
Law-of-the-Wall is used. Test simulations for Reynolds numbers up to Res ¼ 106 yield reasonable results. This
includes predictions of the friction coefficient, where good agreement with an empirical correlation is
observed.

Investigation of the spatial correlation of the instantaneous streamwise velocity field next to the wall shows
fine structure, like that observed in more complex models that also inject statistical fluctuations (randomness)
as part of the boundary condition. This is obtained at no additional modeling cost.
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[15] G.Grötzbach, Grötzbach, Direct numerical and large eddy simulation of turbulent channel flows, in: N.P. Cheremisinoff (Ed.),
Encyclopedia of Fluid Mechanics, Gulf, West Orange, NJ, 1987.

[16] U. Piomelli, J. Ferziger, P. Moin, J. Kim, New approximate boundary conditions for large eddy simulation of wall-bounded flows,
Phys. Fluids A 1 (6) (1989) 1061–1068.

[17] G. Hoffmann, C. Benocci, Approximate wall boundary conditions for large-eddy simulations, in: R. Benzi (Ed.), Advances in
Turbulence V, Kluwer, Berlin, 1995.

[18] F. Nicoud, J.S. Baggett, P. Moin, W. Cabot, Large eddy simulation wall-modeling based on suboptimal control theory and linear
stochastic estimation, Phys. Fluids 13 (10) (2001) 2968–2984.

[19] P. Quemere, P. Sagaut, Zonal multi-domain RANS/LES simulations of turbulent flows, Int. J. Numer. Methods Fluids 40 (7) (2002)
903–925.

[20] J.A. Templeton, G. Medic, G. Kalitzin, An eddy-viscosity based near-wall treatment for coarse grid large-eddy simulation, Phys.
Fluids 17 (10) (2005) 105101.

[21] M. Abel, D. Stojkovic, M. Breuer, Nonlinear stochastic estimation of wall models for LES, Int. J. Heat Fluid Flow 27 (2) (2006) 267–
278.

[22] E. Balaras, C. Benocci, Subgrid-scale models in finite-difference simulations of complex wall bounded flows, Technical Report,
AGARD CP 551, Neuilly-Sur-Seine, 1994, pp. 2.1–2.5.

[23] W. Cabot, Large-eddy simulations with wall models, Annual research briefs, Center for Turbulence Research, Stanford University,
1995, pp. 41–50.

[24] E. Balaras, C. Benocci, U. Piomelli, Two-layer approximate boundary conditions for large-eddy simulations, AIAA J. 34 (6) (1996)
1111–1119.

[25] P.R. Spalart, W.-H. Jou, M. Strelets, S.R. Allmaras, Comments on the feasibility of LES for wings, and on hybrid RANS/LES
approach, in: C. Liu, Z. Liu (Eds.), Advances in DNS/LES, Greyden, Columbus, OH, 1997.

[26] E.Y.K. Ng, H.Y. Tan, H.N. Lim, D. Choi, Near-wall function for turbulence closure models, Comput. Mech. 29 (2002) 178–
181.

[27] N. Nikitin, F. Nicoud, B. Wasistho, K.D. Squires, P. Spalart, An approach to wall modeling in large-eddy simulations, Phys. Fluids
12 (2000) 1629.
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